
Random-walk gossip-based manycast with partition detection

Mikael Asplund, Simin Nadjm-Tehrani
Department of Computer and Information Science, Linköping University

SE-581 83 Linköping, Sweden
{mikas,simin}@ida.liu.se

Abstract

Communication is vital for successful cooperation in
the event of a disaster. Such a situation calls for dis-
semination methods that provide partition-tolerant, energy-
efficient, timely, and reliable delivery. We present a pro-
tocol that meets these requirements by combining a novel
random walk gossip with a partition detection mechanism.
The protocol is able to guarantee that at least M nodes will
be reached by the message without having to know which
nodes are in the system.

1 Introduction

When the communication infrastructure is needed the
most - in the event of a disaster - it is the most likely that it is
not available. We consider how rescue personnel working
in such conditions can be supported by networking proto-
cols which are tolerant to disconnectivity and unstructured
topologies. Moreover, since communication devices will
probably be battery driven and power is not easily available,
protocols need to very restrictive in communication to save
power. In particular, we are interested in reliable multicast
operations in which a sender wants to send a message that
can be relied upon to reach at least a portion of a certain
group of receivers (i.e., manycast). Epidemic algorithms
in mobile networks can be broadly categorised as using lo-
calised gossiping [2] or anti-entropy [5]. Both mechanisms
have drawbacks; while the former approach suffers from
a complicated balance between wasting resources and the
risk of messages not being propagated, the latter provides
full coverage but generally results in slow propagation as
well as a high bandwidth usage. Recently, Khelil et al. [3]
proposed to use a combination of these approaches called
hyper-gossiping to achieve best-effort broadcasts in parti-
tioned networks.

We believe that cooperation in post-disaster areas re-
quires a new kind of protocol which is efficient (short delay,
low bandwidth), capable of dealing with disrupted commu-
nication, reliable, and which does not require knowledge of

which nodes that are in the system.
We present the basics of a protocol called RWG which

is an acronym for Random Walk Gossip. We believe that
this protocol meets the need for energy-efficient reliable
communication in an intermittently connected environment.
The protocol relies heavily on the idea to use hashing of
node addresses instead of keeping track of all the nodes in
the system. This way we take the middle way between best-
effort algorithms requiring no knowledge at all and fully
reliable protocols requiring full knowledge. The guarantee
that we can provide using RWG is that at least M nodes will
be reached by the message. Moreover, we expect that in a
benign network, it will reach all nodes with high probability
and with low latency.

2 Random walk gossip algorithm

The protocol has two modes: gossiping and waiting.
During the gossiping phase, the message spreads out in the
network while trying to asses whether the system is parti-
tioned or not. If a holder of a message (custodian) decides
that the network is partitioned, it puts the message on hold.
This will cause nodes to be silent when no new nodes can be
reached, and thus reducing energy-consumption. Eventu-
ally, the node will discover that uninfected nodes are nearby
and resume propagation of the message.

As opposed to many other multicast protocols,
we assume very little regarding network connectiv-
ity. The only requirement is a form of network live-
ness which dictates that for any two nodes ni and
nj and time t there are nodes n1, . . . nk and con-
tacts (ni, n1, t1), (n1, n2, t2), . . . , (nk, nj , tk+1) where t <
t1 < . . . < tk+1 and a contact is an opportunity to send a
message between two nodes at a given time.

Moreover, we assume that the approximate number of
nodes in the system is known. No other knowledge is as-
sumed such as node addresses, when contacts will occur,
or geographic information. Finally, the current version of
the protocol requires infinite buffers for keeping track of
deleted messages. This can be traded for less strong deliv-
ery guarantees or by accepting at least once delivery seman-

1



uninfected

forwarding

inactive

gossipers

Figure 1. Gossiping phase

tics as opposed to exactly once semantics.
Each message is composed of the following fields: mes-

sage id (mid, hop-count, visited nodes (visited), recently
visited nodes (recently), control information, and data.
The visited node field is a vector of a length which is at least
M , where M is the number of nodes that must be delivered
to. The semantics is the following: if hash(mid, i) = j
where i is a visited node, then visited[j] = 1, where hash()
is a standard hash-function (e.g. modulo division).

The gossiping phase simulates the ideal gossip as pro-
posed by Demers et al. [1]. This requires that a random
node is selected to which to send the message (assuming
push-semantics). However, since we do not know which
nodes are in the system, this selection process is done by
letting the message perform a random walk in the network
for a number of hops. This random walk acts as a random
selection mechanism.

Figure 1 shows the basic idea. The nodes marked with a
square are the ones corresponding to the gossiping nodes in
a normal networks. The other marked nodes will also hear
the message but as a side-effect.

Algorithm 1 describes the basic behaviour during the
gossipping phase of the algorithm. The mechanism to
choose a random neighbour does not require neighbourhood
knowledge. Instead the message is broadcasted to all 1-hop
reachable nodes. Each receiver sets a timer and when the
timer expires a request-to-forward is sent. The node who
sent the message will only give permission to one such for-
ward request.

Algorithm 1 Random walk gossip
Copy all 1s from recently to visited and set recently to empty
Send message to a random neighbour with 0 in recently
When a message m is heard:

update visited
decide if forwarder

After log(n) hops, duplicate message and repeat
When M nodes have been reached (easily seen in visited):

stop forwarding and propagate delete(m)

The partition detection mechanism is invoked every time
a message is received by a node. The decision to put a mes-
sage in waiting is specific to that message alone, since other
messages might already have seen the parts of the network

which are deemed to be currently unreachable. The mecha-
nism is described in Algorithm 2. The core idea is to com-
pare the lists visisted and recently, and decide the proba-
bility that the network is partitioned.

Algorithm 2 Partition detection
Compare the lists visited and recently
Assume that visitations are independent
Calculate the probability of overlap
If probability less than Pmin:

put m on hold

As an example, consider a node with the follow-
ing visited vector [0, 1, 0, 0, 1, 0, 1, 0, 1] and recently =
[0, 1, 0, 0, 0, 0, 1, 0, 1]. All recently visited nodes had
been visited previously. This indicates that the message
is confronted with a small partition of 4-5 nodes. If,
on the other hand, the recently vector would look like
[0, 1, 1, 0, 0, 0, 0, 0, 1] with only 2 out of three previously
visited, it is too early to tell.

3 Conclusions and future work

We have sketched the basics of a protocol for disseminat-
ing data in a partitionable network where energy is scarce
and transmissions should be kept to a minimum. By using
hashes of addresses the protocol is able to provide abso-
lute delivery guarantees without requiring expensive mem-
bership services. The random walk gossiping avoids the
problems of flooding-type algorithms where a lot of re-
dundant transmissions are made. We plan to continue this
work by performing simulations and comparing with simi-
lar approaches such as hypergossiping [3] and route driven
gossip [4], and considering more ways to optimise energy-
consumption.

References

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing (PODC’87),
pages 1–12, 1987. ACM Press.

[2] Z. Haas, J. Halpern, and L. Li. Gossip-based ad hoc routing.
IEEE/ACM Trans. Networking, 14(3):479–491, 2006.

[3] A. Khelil, P. J. Marrón, C. Becker, and K. Rothermel. Hypergossip-
ing: A generalized broadcast strategy for mobile ad hoc networks. Ad
Hoc Netw., 5(5):531–546, 2007.

[4] J. Luo, P. Eugster, and J.-P. Hubaux. Route driven gossip: proba-
bilistic reliable multicast in ad hoc networks. In Proceedings of the
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM’03), volume 3, pages 2229–
2239, 2003. IEEE.

[5] A. Vahdat and D. Becker. Epidemic routing for partially connected
ad hoc networks. Technical report, Duke University, 2000.


