
Architecting Fault Tolerance using Abstractions

Patrick H. S. Brito1∗ Roǵerio de Lemos2

Cećılia M. F. Rubira1

1 State University of Campinas, Brazil 2 University of Kent, UK
{pbrito, cmrubira}@ic.unicamp.br r.delemos@kent.ac.uk

Abstract

This paper discusses how architectural abstractions can
be effective in developing fault-tolerant software systems.
Depending on the fault model and the resources available,
different abstractions can be employed in order to repre-
sent explicitly issues that are related to fault tolerance, such
as, error detection, and error and fault handling. These
architectural abstractions, and their internal views, can be
instantiated into concrete components and connectors for
designing fault-tolerant software architectures. Since struc-
tural and behavioural properties associated with these ab-
stractions are formally specified, the process of verifying
and validating software architectures can be automated.

1. Introduction

The provision of fault tolerance relies on the existence
of redundancy, which can be incorporated either implic-
itly or explicitly at the architectural level. An example of
implicit redundancy is the usage of exception handling for
supporting error recovery. If special care is not taken when
structuring the system, the normal and abnormal specifi-
cations can be entangled thus increasing system complex-
ity. Explicit redundancy is an inherent aspect of strongly-
structured systems, i.e., systems in which the structuring of
redundancy is part of the actual system, thus restricting the
impact of faults. Examples of explicit redundancy are N-
version programming and recovery blocks, which are two
software fault tolerance techniques.

This paper presents how architectural abstractions can be
effective when developing fault-tolerant software systems,
applying both implicit and explicit redundancy. The ide-
alised fault-tolerant architectural element (iFTE) [2], which
is an abstraction based on exception handling, provides the
means for promoting error confinement and supporting fault

∗Supported by Fapesp/Brazil, grant 06/02116-2 and CAPES/Brazil,
grant 0722-07-3.

tolerance at the architectural level. The halt-on-failure ar-
chitectural element (HoFE), which is an abstraction that as-
sumes crash failure semantics, provides the basis for incor-
porating explicit redundancy when designing fault-tolerant
systems. Depending on the fault model and the availabil-
ity of resources, the appropriate architectural abstraction
should be used. For obtaining fault-tolerant software ar-
chitectures, these abstractions are instantiated into architec-
tural components and connectors, which are then configured
depending on the interaction constraints dictated by their
structural and behavioural properties.

These architectural abstractions are presented in the con-
text of a general approach for the formal specification, veri-
fication, and validation of fault-tolerant systems. The adop-
tion of abstractions together with the use of formal lan-
guages allows the automatic verification of high-level mod-
els for identifying and removing design faults at the ini-
tial stages of the software lifecycle. After the verification
activities, the architectural models can be used as a basis
for generating both the system’s source code [3], and its
architectural-based test cases [4]. The automatic transfor-
mation from architectural models into source code tends to
reduce the number of faults that are introduced into the sys-
tem implementation when compared with an error prone
manual programming. The architectural-based test cases
are able to identify and remove implementation faults that
are related to the architectural design of the system, al-
though they are restrictive on their system test coverage.

2 Fault-tolerant Architectural Abstractions

Theidealised fault-tolerant architectural element(iFTE)
is an architectural abstraction for structuring fault-tolerant
systems. This abstraction enforces the principles associ-
ated with the concept of the idealised fault-tolerant compo-
nent [1], and incorporates mechanisms for detecting errors,
as well as propagating and handling them in a structured
way. The iFTE abstraction provides an explicit separation
of concerns between two types of behaviour: (i) the nor-

mal behaviour, which realises the services of the applica-
tion, and (ii) the abnormal (exceptional) behaviour, which
realises the detection, propagation and handling of errors.
In order to provide this separation, the iFTE abstraction de-
fines four types of interfaces, which are presented in Fig-
ure 1. While theI iFTE PN and I iFTE RN are respon-
sible for the normal behaviour,I iFTE PA andI iFTE RA
are responsible for the abnormal behaviour.

�
�
����
�
��

�
�
����
�
��

<<iFTE>>
Idealised Fault-Tolerant Architectural Element

�
�
����
�
	�

�
�
����
�
	�

Figure 1. iFTE Abstraction

The halt-on-failure architectural element(HoFE) is an
architectural abstraction for the provision of error confine-
ment and fault tolerance, and which enforces the principles
associated with thecrash failuresfault model [5]. When
an HoFE fails, it fails silently without producing any error
signal. The HoFE abstraction defines two types of inter-
faces, which are presented in Figure 2. It is assumed that
an HoFE is able to detect failures on other architectural el-
ements from which requests operations, e.g., by associating
time-outswith theI HoFE Req interfaces.

��������

����������	�
��

����	����
�����������������	
�� ���������

Figure 2. HoFE Abstraction

3 A Rigorous Development Method

In our approach, abstractions are first-level units, guid-
ing the development since the specification, until the ver-
ification and validation of the software architecture. An
overview of the development method is shown in Figure 3.

�
�
���������	�
�
�	��

����	��	���������	�

�
�
���
�	��

����	��	���

������	�

������������
���� �!"#"�$%

��������������
�� ����� �!"#"�$%

&
�
���������	�
�
�	��

�
�	'������	��	��

(
�
���
�	��

�
�	'������	��	��

�������� �!"#"�$% � �!"#"�$�!)�"��)�*!�%

+
�
���
�	��,�	����,

����	��	���������	�

������������
���� �!"#"�$%

��������������
�� ����� �!"#"�$%

-
�
.�������	�	�
�

�	���
�	'�����
/

0
�
12���	�
�
�

	��	�����

�3!������$*!"�4 ��"$��"��% � ��"$��"��56%7
�
8�2	���
����
,�

9
�
.�	����,�	����
�	��

����	��	���������	�

Figure 3. A Rigorous Development Method

Figure 4 details the execution of Activities 2, 4, and 6
of Figure 3, which refer to the verification and validation

(V&V) of the software architecture. A main feature of our
proposed approach is that the scenario concept is used in all
the V&V activities.

�
�
��������	�
��
�
�

�
���
��

�
�
�����

�
�
��
�
�

�
���

���	�
�	
����
��
������

�
�
�
�
��
�
�����	

�
��
�
�����

�
�
�
�
��
�
�����	

����
��
���
�
����
�

�
�
�
��������
��
�

����
�
�

�
�
�
�
��

����
�

� !"#$%"&'(
) *#"+"#)#*'$,"&)

-./0123/24.-5-672.-/2189
7:723;7<3/1=1/-2189

Figure 4. Steps of the V&V Activities

4 Conclusions

The development of fault-tolerant software system can
be more effective if architectural abstractions are employed.
These are able to abstract away from system details while
providing the means for analysing how errors are propa-
gated, detected and handled, and how faults are handled.
Associated with these abstractions, we have defined a gen-
eral rigorous development approach for the formal specifi-
cation, verification and validation of software architectures
that are based on these abstractions. In this paper, we have
presented two distinct architectural abstractions from which
fault-tolerant software systems can be built: the idealised
fault-tolerant architectural element (iFTE), and the halt-on-
failure architectural element (HoFE).

References

[1] T. Anderson and P. A. Lee.Fault Tolerance: Principles
and Practice. Prentice-Hall, 1981.

[2] R. de Lemos. Architectural fault tolerance using excep-
tion handling. In R. de Lemos, C. Gacek, and A. Ro-
manovsky, editors,Architecting Dependable Systems
IV, LNCS 4615, pages 142–162, 2007.

[3] S. Entwisle, H. Schmidt, I. Peake, and E. Kendall. A
model driven exception management framework for de-
veloping reliable software systems. InProc. of the 10th
IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC’06), pages 307–318, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[4] D. J. Richardson and A. L. Wolf. Software testing at
the architectural level. InInternational Workshop on
Multiple Perspectives in Software Development (View-
points ’96) on SIGSOFT ’96 Workshops, pages 68–71,
New York, NY, USA, 1996. ACM.

[5] G. Varghese and M. Jayaram. The fault span of crash
failures.Journal of the ACM, 47(2):244–293, 2000.

