
Using Automated Reverse Engineering
for the Safe Execution of Untrusted Device Drivers

Vitaly Chipounov, George Candea, Willy Zwaenepoel
EPFL (Lausanne, Switzerland)

1. Motivation
The driver architecture employed by modern oper-

ating systems presents a safety challenge. The device
driver acts as a translator between an operating system
and a particular hardware device (e.g., printer, video
card, scanner, digital cameras) and usually runs in kernel
mode, thus having maximum privilege over the computer
where they execute.

As a result, device drivers are responsible for impor-
tant fractions of OS failures; e.g., in Windows 2000 sys-
tems, device drivers account for 27% of crashes reported
in the field [6]. In Linux, drivers were found to have
3x to 7x more bugs than the rest of the OS [1]. Device
drivers are usually written by the companies that develop
the hardware, since they are the only ones with access to
the proprietary details of the device’s functions. Unfor-
tunately, the company’s expertise lies not in developing
reliable software, but rather in building hardware. Writ-
ing a device driver requires an in-depth understanding of
how the kernel works, and debugging kernel-mode code
is considerably more difficult than user-mode code.

Buggy drivers do not only crash the system, but
they can also compromise security. For instance, last
year a zero-day vulnerability was disclosed within a third
party driver that is shipped withall versions of Win-
dows XP (secdrv.sys, developed by Macrovision as part
of SafeDisc). The vulnerability allows a local non-
privileged user to elevate his/her privileges to Local Sys-
tem, leading to complete system compromise [7].

Recent systems such as Xen and Nooks have im-
prove reliability by isolating the kernel from buggy de-
vice drivers. In our approach, we depart from these pro-
posals, by not executing the driver iself, but rather ex-
tracting the information it encodes and in effect “show-
ing” the kernel how to interact with the device driver.

2. Proposed Solution
We consider the driver as an encapsulation of a

state machine, describing how certain actions should be
achieved using the hardware device (e.g., how to send
or receive a data packet using a given network card). If
the hardware vendor provided a formal description of this

state machine, then it would be possible to verify the state
machine’s safety and then execute it in the kernel. In
the absence of such a description, we consider the pro-
prietary, binary driver as the next best thing to a formal
specification of the state machine. We extract this state
machine from the driver using a combination of I/O in-
terception at the level of the virtual machine and test gen-
eration.

Our solution consists of two parts:
• A reverse-engineering tool that extracts from a bi-

nary driver the corresponding state machine in a
form that is safe to execute in the kernel

• A mechanism for an OS kernel to use this extracted
specification in order to interact with the device, ob-
viating the need for loading and running untrusted
third party code

2.1. Legal Reverse Engineering of Drivers
Extracting the state machine could in theory be done

by decompiling the binary with the various available
tools; this is however an approach that is technically chal-
lenging and also borders on illegality.

Instead, we observe the driver’s behavior, and in-
fer based on these observations what the underlying state
machine is doing. In particular, we run the device driver
inside a modified virtual machine, presenting to the driver
a virtual version of the device driver it expects. Using the
virtual machine monitor, we intercept and record the in-
teractions between the driver and the (virtual) hardware;
we use this trace to reconstruct the driver’s state tran-
sitions. We generate specially designed requests to the
driver, that enable us to explore the state machine. Once
the state machine is extracted, it is replayed by a special
module inside the kernel.

2.2. Obtaining Activity Traces
We use the QEMU emulator, a widely used hypervi-

sor. QEMU has an internal table that maps I/O addresses
to device handlers. In order to trace all driver/hardware
interactions, we modify the appropriate table entries to
redirect all I/O to our own routines, instead of the virtual
device; our routines then record the call, pass it to the
virtual device, and then record the response.



We record different traces generated in response to
changing parameters. For example, when tracing a video
card driver, we request multiple screen resolutions from
the driver, in order to subsequently be able to identify
differences between traces. The generation of “test pat-
terns” is currently hard coded, but will use a feedback
loop in which test patterns are generated so as to cover
execution paths that previous patterns have not exercised.

2.3. Trace Analysis
The state we need to recover consists of the hard-

ware registers (accessed via I/O ports) and the driver’s
own in-memory variables. A state transition occurs upon
reception of an event from the device or from the operat-
ing system. Trace analysis has three important goals: to
extract the semantics of hardware registers, identify the
patterns in which the driver uses them, and identify the
data structures used by drivers internally.

In order to identify the semantics of the status reg-
isters, we judiciously generate input patterns that trig-
ger minor variations in driver behavior (e.g., asking the
network driver to send packets of varying lengths). We
then compute the differences between traces obtained for
the various inputs by using the Hirschberg algorithm for
longest common subsequence [3]. The statistically sig-
nificant differences are then used to identify all the hard-
ware registers involved and we then cross-correlate to the
input parameters (e.g., for a network driver, if the values
of a particular register differ by the same amount as the
input packet lengths do, then we conclude that register
holds the user-provided length plus someε).

The utilization patterns of the hardware registers re-
flect the way in which the hardware device expects to be
programmed. For example, polling patterns appear as
a sequence of reads to the same register, until its value
changes, at which point the reads stop. We supplement
trace-based recognition with static analysis of the binary
driver; e.g., polling takes the form of a while loop with
a condition involving one or more hardware registers be-
ing read. The combination of static and dynamic analysis
provides significantly higher resolution power.

Finally, to identify the driver’s data structures, we
intend to use a combination of static analysis of the bi-
nary driver with pattern-matching against memory access
patterns, intercepted via the virtual MMU. For example,
ring buffers are common among network card drivers to
keep track of incomming/outgoing packets in a FIFO or-
der; such ring buffers occupy a fixed location in mem-
ory which is accessed via a pointer that scans the buffer
and wraps around. This approach is analogous to reverse-
engineering the hardware register utilization patterns.

2.4. Driver State Machine Playback
We implement the playback component as a Linux

kernel module; in some sense, we aim to get the benefits

of Singularity [5] without needing a brand new OS. The
reverse-engineered state machine is a table describing the
transitions that were observed in the original driver.

We expect it is not possible to always extract the en-
tire state machine from all drivers. In this case, we intend
to run the reverse-engineered part in the kernel and the
untrusted driver in user-mode using UMLinux; when an
operation is encountered that cannot be handled by the
(safe) kernel component, it is relayed to the user-mode
(unsafe) driver. The reverse-engineering process contin-
ues over time, progressively moving portions of function-
ality from the isolated driver into the kernel.

3. Related Work
The idea of using different inputs to identify the se-

mantics of registers was inspired by [4], where different
combinations of operands for a given assembler instruc-
tion are used to generate the binary form. By compar-
ing the changes, they infer the meaning of the different
fields in the opcodes. The Singularity system [5] is en-
tirely written in a type-safe garbage-collected language;
the formal specification of the device driver interfaces
(software-isolated processes, no sharing of data, com-
munication through specific contract-based channels) en-
sures that drivers are run safely; we aim to achieve this
same level of safety, without requiring that kernels be
reimplemented in a different language. In [2], the au-
thors perform automated protocol reverse-engineering; it
was this paper that suggested to us the idea of automati-
cally reverse-engineering the state machine from drivers.

4. Conclusion
With our work, we hope to offer modern operating

systems the option of being able to interact with hard-
ware devices without having to compromise the safety of
the kernel. If our approach succeeds, then we hope it will
motivate device manufacturers to no longer ship propri-
etary software to use their devices, but rather open, veri-
fiable descriptions of how to interact with the hardware.
We wish to build a system that allows OS kernels to use
such descriptions in order to safely interact with devices.

References
[1] Andy Chou et al. An empirical study of operating systems

errors. In18th ACM SOSP, 2001.
[2] W. Cui et al. Discoverer: Automatic protocol reverse engi-

neering. InUSENIX Security Symposium, 2007.
[3] D. S. Hirschberg. Linear space algorithm for computing

maximal common subsequences.Comm. ACM, 1975.
[4] W. C. Hsieh et al. Reverse-engineering instruction encod-

ings. InUSENIX Annual Technical Conference, 2001.
[5] G. Hunt and J. Larus. Singularity: Rethinking the software

stack.Operating Systems Review, 41(2), 2007.
[6] B. Murphy. Personal comm. Microsoft Research, 2002.
[7] Symantec. http://www.symantec.com/enterprise/

securityresponse/weblog/2007/10.


