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1 Introduction

We are witnessing an era where large scale machines are a
reality. Today’s trend in building such machines is to use
hundreds of thousands of off-the-shelf CPUs such as the
PowerPC, Itanium, or x86-64, combined with custom [2]
and/or off-the-shelf interconnections. This trend is further
assisted by recent advantages in system integration scaling,
making plausible the use of multi core architectures to fur-
ther improve the computational capabilities of these systems.
However, these technological trends, together with the incli-
nation in decreasing die’s voltage, make these systems more
susceptible to transient hardware failures and memory bit
flips [6]. Moreover, the high power consumption for these
supercomputers leads to immense heat dissipation, which
consequently can accelerate the failure rates of differentde-
vices like the memory, the I/O subsystems and the CPUs [4].
As the hardware scales, the software also becomes more
complex and more vulnerable to failures (higher failure rate,
and larger number of computing nodes). Hence, system reli-
ability is exacerbated with respect to former computing sys-
tems [5]. To address this trend a plethora of fault tolerant
techniques have been proposed in literature including a va-
riety of checkpointing methods[1]. However, recent stud-
ies [4, 5] indicate that conventional techniques in the field,
such as periodic checkpointing, can significantly impact the
potential performance gains, especially under failure con-
ditions. Checkpointing and recovering a job that involves
thousands tasks may take up to tens of minutes. This over-
head, and the accentuated failure behavior tend to invalidate
common assumptions [3] (e.g. Mean Time To Failure>>

checkpointing time). Making quantitative assessments of
dependability and characteristics of today’s supercomputers
still an open issue. Field Failure Data Analysis (FFDA) rep-
resent in this scenario an effective viable and viable strategy,
heading toward a better understanding of such characteris-
tics.
This fast abstract presents a framework for dependability as-
sessment of supercomputers via failure data analysis. The
proposed framework is tailored i) to provide an automatic
classification of the information contained in the failure data,
ii) to provide detailed statistics on failure/error distributions,
and iii) to assess the effectiveness of fault tolerance tech-
niques (e.g. checkpointing ) through the evaluation of a set
of metrics such as: Availability, number of jobs to roll back
due to a failure, average number of nodes available for com-
putation, mean time to completion of a job. A preliminary
application of the framework is proposed in the context of a
FFDA campaign conducted on two different supercomputers
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at the University of Illinois Urbana-Champaign. Failure data
has been collected through three different types of log files,
i.e. the Linux syslog , the Moab platform log2, and the IBM
General Parallel File System (GPFS) log3. Currently differ-
ent types of failures have been encountered, and they have
been used to identify a model of the logs, here referred as
dictionary of failures.

2 Approach Description

In this study, logs are obtained from cluster logging dae-
mons. Periodically the logs are moved to a server in charge
of executing the framework. The three types of logs provide
information on i) the date and time of the event, ii) the name
of the node involved with the event, iii) the nature and the
gravity of the event, and iv) a message with the description
of the event. In a preliminary deployment of the framework,
we collected about a 100 million entries for MoabLogs, 52
millions for the syslog and about 8 million for the GPFS log,
totalizing of about 30 Gigabyte of data.
Figure 1 depicts the approach accomplished by the frame-
work. We can broadly describe two macro-phases: the setup
phase (first phase) and the operational phase (second phase).
The setup phase is in charge of building a model of log files,
throughout a classification of all the log messages. The raw
logs contain a tremendous amount of data, much of which is
repeated or redundant. Before we can use these logs to study
machines’ failure behavior, we must first filter out the use-
less data and isolate unique failure messages. Hence, in this
phase, we first substitute all addresses (e.g. IP, MAC), ma-
chine IDs, dates, user names etc. with a set of wildcards. For
instance the username JaneDoo is replaced with the wild-
card $USER. This way, log entries that differ only by these
parameters are described by the same string. We are thus
able to collapse several million of entries in only 823 dis-
tinct log entries for syslog ( 2314 and 57 respectively for
moablog and GPFS), by simply querying this set for dis-
tinct event messages4. We now have a set of distinct entries,
that are representative of all the possible event logged in the
analyzed data. However, they still contain a lot of noise.
Hence,we build a set of regular expression that matches all
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Figure 1: The approach pursued in the framework

the noisy messages thus creating a black list. We then fur-
ther process the data in order to gather a clean set of entries
that we believe belonging to the events of interest5. With this
filtering, we achieved a set of 122 distinct failure event mes-
sages for syslog, and 170 and 30 respectively for the Moab
and the GPFS.

These further shrunk sets allowed us to manually tag each
message format, specifying the subsystems they refer to.
This allows us to implement a simple, but effective, auto-
matic classification of the messages based on the observed
message format present in the analyzed data. These classi-
fied messages, constitute ourdictionary of failures, as out-
lined in Figure 1. It is worth noting that we extend thedic-
tionary of the observed failures by adding further data from
maintenance/outage reports, so that, in our analysis, we can
easily take into account system downtime due to mainte-
nance/general outage (e.g. power outage).
The second phase is the true operational phase. Logs are ana-
lyzed by the framework, filtering out all the messages tagged
as noise in phase 1. Filtered logs are then coalesced using a
hybrid coalescence technique, i.e. content-based and tempo-
ral (spatial) coalescence. With this technique, a failure event
is first coalesced on a specific class of failures, in accord to
the log format present in thedictionary. After that, failure
events within the same class are further coalesced with re-
spect to time, within a given windows size. A suitable width
of the window size is chosen after performing a sensitivity
analysis on the number of collapsed entries in a tuple, as a
function of the windows size itself.
In order to exploit possible correlations between entries of
different classes of failure and/or different nodes, we con-
sider that i) failures with timestamp in the same window are
likely representative of the same event, and ii) failures on
different nodes within the same window are likely to be cor-
related.
At the end of the described workflow, all the logs filtered so
far are finally used for evaluating i) a set of metrics (e.g. de-

5We used very extensively both the GPFS and the Moab manuals tofind
out the actual failure/error event messages, while for the syslog we rely on
the experience from our past work.

pendability attributes and metrics like the average numberof
rolledback jobs due to a failure, and average time needed for
checkpointing.), and ii) a set of statistics and distributions of
the observed failure behaviors.

3 Conclusions and Future Work

This paper briefly presents a framework conceived for
supporting supercomputer Failure Data analysis. The ob-
jective is i) to automate the process of building a field data
model by means of adictionary of failures, and ii) to sim-
plify the off line assessment of supercomputers by means of
Field Failure Data Analysis, making possible to evaluate a
set of dependability metrics based on real data. Future work
will deal with a FFDA campaign on the considered machines
in order to extensively assess their dependability, and theef-
fectiveness of the adopted fault tolerance mechanisms.
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