
Detecting Hidden Shared Dependencies via Covert Channels

Kaustubh R. Joshi
AT&T Labs Research

180 Park Ave, Florham Park, NJ, USA
kaustubh@research.att.com

Abstract

Designs for high availability using redundant subsys-
tems rely on the independence of replicated subsystems to
work. However, increasing prevalence of multiple adminis-
trative domains in distributed systems obscures dependency
information. In this paper, we propose a new technique to
detect hidden shared dependencies. We utilize the insight
that shared resources often give rise to covert channels that
can then be used to detect the presence of the shared re-
source itself. Through experiments, we show that the tech-
nique is feasible for an important subclass of dependencies
- shared hidden bottlenecks.

1 Introduction

Distributed systems managed by multiple administrative
entities are becoming increasingly common due to techno-
logical trends such as utility computing and service oriented
architectures. In such scenarios, it is often difficult for any
single entity to obtain information about the design of the
whole system. For instance, information may be withheld to
maintain competitive advantage, to preserve proprietary se-
crets, or to comply with legal requirements. Unfortunately,
limited information about the sub-components of an overall
system can have important design consequences. For ex-
ample, when designing highly available systems, it is crit-
ical for redundant sub-systems to have independent failure
modes. However, it is difficult to make such determinations
without knowledge of the sub-systems’ deployment config-
urations. For instance, if a backup web service is hosted
by the same virtual web hosting provider as a seemingly in-
dependent primary service, the hosting provider resources
become a hidden shared dependency and a common point
of failure.

Detecting such hidden shared dependencies is an impor-
tant but difficult problem. Trends such as virtual hosting and
server consolidation make the problem even harder. De-
pendencies can be deduced through correlations in failure

occurrences, but such data usually takes very long to col-
lect. Some dependencies can be deduced through the ex-
ternal observables of a system. For example, do two web
services use the same web server (i.e., Apache, IIS)? How-
ever, others are more difficult - e.g, Do the services have a
shared network connection? Do they share the same back-
end? The deeper the shared dependencies occur in the sys-
tem, the more difficult they are to detect.

We propose a novel approach to detect hidden shared de-
pendencies, especially those due to resource sharing, with-
out requiring the co-operation of the target systems. To do
so, we use the concept of “covert channels” that was first
introduced by Lampson in [2] as a term for processes leak-
ing information by manipulation of their environment. It
is well known that resource sharing between entities often
induces covert channels that are very difficult, if not impos-
sible to eliminate [3]. Our key insight is that conversely, if a
covert channel is detected between two entities, it indicates
with high likelihood the existence of a shared dependency
between the two entities. Therefore, the basic idea is to at-
tempt to communicate between the target entities over a pre-
defined set of possible covert channels. Success indicates a
dependency, and the type of the successful covert channel
provides information about the type of dependency. To be
effective, the communication attempts should be subtle, so
as to not trigger adaptive behavior changes (e.g., resource
reallocation) in the target entities.

2 Load Induced Signal Injection

To illustrate a concrete example of our approach, the
covert channel we target is one in which an increased work-
load on one of the two target services (called the sender)
causes an increased load on a shared resource, thus lead-
ing to an increase in the response time of the other service
(called the receiver). Recently, [4] have shown that it is
possible to stress-test a large fraction of even the largest In-
ternet sites using bursts of relatively few requests (< 60)
provided they are co-ordinated to arrive very close to each
other. Our implementation uses a similar approach of send-

1



Web Service 1

(RUBiS)

Web Service 2

(RUBBoS)

Shared

MySQL 5.1

Server

Probe

Client

8 core Xeon

7GB RAM

Gibabit Ethernet

Access

Network

1.8 GHz Pentium IV

640MB

100 Mbps Ethernet

Figure 1. Experiment Setup

ing synchronized bursts, or epochs, of requests within sev-
eral milliseconds of each other to temporarily increase the
workload on the sender system.

However, unlike [4], our goal is to detect changes in re-
sponse time in a completely different system. Therefore, a
workload fluctuation pattern (the covert signal) that is un-
likely to occur naturally and that allows good detection sen-
sitivity is required. The solution we propose draws upon
our previous work [1] on using frequency domain analysis
to boost distributed systems measurement sensitivity. The
number of requests in each epoch sent to the sender system
is periodically fluctuated according a square wave pattern at
a user-specified frequency f . The response time of the re-
ceiver system during the epochs is measured using probe re-
quests. The response times series at the receiver is then an-
alyzed in the frequency domain by constructing its Fourier
Transform. If a frequency spike is observed at the frequency
f , we assume that a hidden dependency has been detected.

By choosing the type of transaction e.g., static, large, or
CGI requests, it is possible to exercise different resources in
the system i.e., the front-end, network, or back-end respec-
tively and thus detect different types of shared dependen-
cies. For example, if a covert channel is detected using CGI
scripts but not large files, then it could be possible that the
target services share an application server but not a network
link.

3 Experiments

To test the feasibility of our approach, we used a testbed
configured as shown in Figure 1. The setup includes PHP
versions of two web services commonly used as bench-
marks - the RUBiS auction site and RUBBoS bulletin board
applications. Each service is deployed on its own physical
host. However, they use a common database server hosted
on a third host. Background traffic and the covert chan-
nel workloads are generated from a separate host as shown.
RUBiS is used as the sender service and RUBBoS as the
receiver service.

Two experiments were conducted - in the first (the
database experiment), the database oriented SearchItems-
ByCategory RUBiS transaction was used as the workload,
while in the second (the base experiment), the short in-

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

R
es

po
ns

e 
Ti

m
e 

(s
ec

)

0
0.05

0.1
0.15

0.2
0.25

0.3

-10 0 10 20 30 40 50
Time of Request (sec)

R
es

po
ns

e 
Ti

m
e 

(s
ec

)

Figure 2. Original response time plot

0

0.1

0.2

0.3

M
ag

ni
tu

de
 o

f F
FT

0

0.05

0.1

1 6 11 16 21 26 31 36 41 46
Normalized Frequency

Figure 3. Frequency Domain plot

dex.html transaction was used. In both cases, 100 epochs
were issued and the number of concurrent requests per
epoch was toggled between 1 and 10 at a frequency of
6 cycles per experiment. The StoriesOfTheDay database
oriented transaction was used to probe RUBBoS response
times.

Figure 2 shows the raw response time series for RUB-
BoS with the database experiment on the top and the base
experiment on the bottom. Periodic fluctuations can be seen
in the database experiment, but not in the base experiment.
That is consistent with the fact that the database experiment
stresses a hidden shared dependency (the database), but the
base experiment does not. The fluctuations are very small
with a difference in means of 5.2msec compared to the ser-
vice’s standard deviation of 16msec. However, as seen in
Figure 3, the plots of the magnitudes of the Fourier Trans-
forms of the time series’ paint a much clearer picture. The
signal transmitted over the covert channel is clearly visible
as a spike at a frequency of 6 in the database (top) results.
The spike is more than 50 times the standard deviation of
the remaining frequency components.

References

[1] S. Chen, K. Joshi, M. Hiltunen, W. Sanders, and R. Schlicht-
ing. Transaction dependency graph construction using signal
injection. In DSN 2007, Supplemental Volume, 2007.

[2] B. W. Lampson. A note on the confinement problem. Comm.
of the ACM, 16, 1973.

[3] I. S. Moskowitz and M. H. Kang. Covert channels - here to
stay? In Proc. of the Ann. Conf. on Comp. Assurance, 1994.

[4] P. Ramamurthy, V. Sekar, A. Akella, B. Krishnamurthy, and
A. Shaikh. Remote profiling of resource constraints of web
servers using mini-flash crowds. In Proc. of the USENIX Tech.
Conf., 2008. To Appear.

2


