
Towards Decentralized Management of Graceful Degradation

in Distributed Embedded Systems

Osamah A. Rawashdeh

Electrical and Computer Engineering Department

Oakland University, Rochester, Michigan, USA

rawashd2@oakland.edu

Abstract

Graceful degradation entails a proportional loss of

functionality or the reduction in the quality of services

a system provides in response to faults. Compared to

traditional techniques, graceful degradation is a

promising approach to achieving fault tolerance at

reduced cost. Current research using this approach in

distributed embedded systems assumes a central

management unit responsible for tracking resources

and for system reconfiguration. Such units are single

points of failure and maybe become costly when made

fault tolerant by traditional techniques. This papers

overviews current work on developing a framework

that enables the specification and implementation of

real-time distributed embedded systems that feature

decentralized management.

1. Introduction

Fault tolerance is typically achieved through

redundancy in hardware and software to enable fault

detection and recovery. Explicit spatial redundancy for

a non-trivial embedded system can however be

complex and costly in terms of size, weight, price, and

power consumption. These costs can be prohibitory in

mass consumer products such as automobiles.

A promising new concept to achieving flexible fault

tolerance at lower cost is to design systems that

gracefully degrade in response to faults. A change in

operating mode in response to faults that causes the

loss of non-critical functionality or a reduction in the

quality of the services a system provides is formally

known as graceful degradation [1,2]. The goal of this

work is to provide a framework for modeling and

implementing adaptive real-time distributed embedded

systems capable of graceful degradation.

This work has three principal goals. The first goal is

to design systems without a central management unit,

which is typically responsible for tracking resources

and for system reconfiguration. Such central units are

single points of failure and are costly when made fault

tolerant by traditional techniques. The second goal is to

provide a modeling tool that allows the analysis of all

possible operating modes at design time. Such

capability is essential in safety-critical applications,

where all operating modes have to be explicitly verified

before system deployment. Finally, specifying standard

network interfaces, fault checking, and reporting

standards for modular system components rather than

providing resource hungry middle layer software.

2. Application Specification

An application is comprised of a set of components

that are interconnected and cooperate over a network.

A component is a combination of hardware and

software that produce and/or consume data and has a

standard network interface. There are three kinds of

components: input, output, and processing components.

Input components periodically produce estimates of

physical quantities in form of data packets onto the

system network. Output components, on the other hand,

are consumers of data and drive system actuators (i.e.,

system services). Finally, processing components

perform system-internal data processing and hence

consume as well as produce data.

The data flow between components is captured

graphically in a tree form similar to success trees [3].

The graphing technique allows a system architect the

specification of different degrees of dependency on

input data. For example, a component may have a set

of required inputs in addition to a set of optional

inputs. Data is processed as it become available on the

system network. The quality of the data received and

the availability of optional data affect the quality of the

data produced. The result will be a tree structure for

each system output. The graph nodes are annotated

with attributes, which include data sizes, criticality, and

deadlines. These graphs also serve as a modeling tool

for verification purposes.

3. Communication

A reliable TDMA broadcast network is assumed for

transport of uniquely identified data packets between

producer and consumer components. In a periodic

system, the data size and their broadcast frequency as

well as the total bandwidth available is known at design

time allowing for proper bandwidth allocation. Worst

case network latency, on the other hand, can be

accounted for in the worst case execution time of

components. A controller area network (CAN) will be

used in first implementations of the proposed system.

4. Fault Tolerance

The framework is to support three types of fault

tolerance techniques: masking fault tolerance, graceful

degradation, and a fail-safe behavior. Masking fault

tolerance can be achieved in two ways. It can be

achieved by designing the system to include redundant

producers of the same data. Secondly, a secondary

standby source can be available in the system that

detects the crash failure of the primary source in which

case it starts providing the needed data for the

consumer in a transparent fashion. Graceful

degradation can be implemented by having secondary

standby sources of data be of a lower quality than the

primary producers. Also, non-critical output

components can be implemented to recognize the

absence of required input data and respond by shedding

affected system functionality. Finally, a fault affecting

a critical system output can be handled by failing

safely. This can be achieved by having a special system

wide error message be broadcasted on the network

resulting in all system components switching to a

predefined fail-safe mode.

5. Related Work

Graceful degradation in embedded system is an

active research area. The Chameleon [4], Ardea [5],

and RoSES [6] projects are relevant approaches that

however include central management units. Jini [7] and

CORBA [8], on the other hand, are two frameworks for

designing truly distributed service-based systems but

are designed primarily for large information systems

and therefore are too resource demanding for the

embedded systems targeted in this paper. The recently

released CORBA/e [9] (e for embedded systems) is

aimed at embedded and real-time applications but yet

requires at least 32-bit processors. Finally, other

research efforts focus on the modeling and verification

of adaptive systems and do not consider runtime

management matters in depth.

6. Conclusion

This paper briefly overviewed a modular service-

based approach to designing distributed embedded

systems capable of masking as well as graceful

degradation in response to faults. The main goal of this

work is to develop a set of design methodologies that

result in a system that does not require centralized

management and allow the testing of all possible

configurations to make it suitable for safety critical

applications.

7. References

[1] Herlihy, M.P., “Specifying Graceful Degradation,” IEEE

Transactions on Parallel and Distributed Systems, vol. 2(1),

pp. 93-104, January 1991.

[2] Koopman, P., “Elements of the self-healing system

problem space,” Workshop on Architecting Dependable

Systems (WADS03), May 2003.

[3] Modarres, M., “Functional Modeling of Complex

Systems Using a GTST-MPLD Framework,” Proceedings of

the International Workshop on Functional Modeling of

Complex Technical Systems, May 1993.

[4] Kalbarczyk, Z.T., Iyer, R.K., Bagchi, S., and Whisnant,

K., “Chameleon: A Software Infrastructure for Adaptive

Fault Tolerance,” IEEE Transactions on Parallel and

Distributed Systems, vol 10(6), pp. 560-579, June 1999.

[5] Rawashdeh, O., and Lumpp, J., “Run-Time Behavior of

Ardea: A Dynamically Reconfiguring Distributed Embedded

Control Architecture,” IEEE Aerospace Conference,

IEEEAC Paper# 1516, March 2006.

[6] Shelton, C., Koopman, P. and Nace, W., "A framework

for scalable analysis and design of system-wide graceful

degradation in distributed embedded systems," WORDS

2003, January 2003.

[7] Jim Waldo, “The Jini Architecture for Network-Centric

Computing,” Com. of the ACM, vol. 42(7), pp. 76-82, 1999.

[8] Markus Aleksy, Axel Korthaus, and Martin Schader,

Implementing Distributed Systems with Java and CORBA,

Springer, Heidelberg, 2005.

[9] Object Management Group, Inc., “CORBA/e Resource

Page,” April 2008, http://www.omg.org/corba-e.

